Learning and data clustering with an RBF-based spiking neuron network

نویسندگان

  • Natacha Gueorguieva
  • Iren Valova
  • Georgi Georgiev
چکیده

Learning and data clustering with an RBF-based spiking neuron network Natacha Gueorguieva a , Iren Valova b & Georgi Georgiev c a Computer Science , CSI/City University of New York , 2800 Victory Boulevard, Staten Island, NY 10314, USA b Computer Science , University of Massachusetts Dartmouth , 285 Old Westport Road, N. Dartmouth, MA 02747, USA c Computer Science , University of Wisconsin Oshkosh , 800 Algoma Boulevard, Oshkosh, WI 54901, USA Published online: 20 Feb 2007.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised clustering with spiking neurons by sparse temporal coding and multilayer RBF networks

We demonstrate that spiking neural networks encoding information in the timing of single spikes are capable of computing and learning clusters from realistic data. We show how a spiking neural network based on spike-time coding and Hebbian learning can successfully perform unsupervised clustering on real-world data, and we demonstrate how temporal synchrony in a multilayer network can induce hi...

متن کامل

Spiking Neurons by Sparse Temporal Coding and Multilayer Rbf Networks

We demonstrate that spiking neural networks encoding information in the timing of single spikes are capable of computing and learning clusters from realistic data. We show how a spiking neural network based on spike-time coding and Hebbian learning can successfully perform unsupervised clustering on real-world data, and we demonstrate how temporal synchrony in a multi-layer network can induce h...

متن کامل

Unsupervised Classification of Complex Clusters in Networks of Spiking Neurons

For unsupervised clustering in a network of spiking neurons we develop a temporal encoding of continuously valued data to obtain arbitrary clustering capacity and precision with an efficient use of neurons. Input variables are encoded independently in a population code by neurons with 1-dimensional graded and overlapping sensitivity profiles. Using a temporal Hebbian learning rule, the network ...

متن کامل

Unsupervised learning of synaptic delays based on learning automata in an RBF-like network of spiking neurons for data clustering

In this paper, a new delay shift approach for learning in an RBF-like neural network structure of spiking neurons is introduced. The synaptic connections between the input and the RBF neurons are single delayed connections and the delays are adapted during an unsupervised learning process. Each synaptic connection in this network is modeled by a learning automaton. The action of the automaton a...

متن کامل

Neural Nets SELF-LEARNING FUZZY SPIKING NEURAL NETWORK AS A NONLINEAR PULSE-POSITION THRESHOLD DETECTION DYNAMIC SYSTEM BASED ON SECOND-ORDER CRITICALLY DAMPED RESPONSE UNITS

Abstract: Architecture and learning algorithm of self-learning spiking neural network in fuzzy clustering task are outlined. Fuzzy receptive neurons for pulse-position transformation of input data are considered. It is proposed to treat a spiking neural network in terms of classical automatic control theory apparatus based on the Laplace transform. It is shown that synapse functioning can be ea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Exp. Theor. Artif. Intell.

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2006